
Type-safe, statically checked composition of HTTP servers

0.9.0

May 8, 2019

Contents

1 Introduction 3
1.1 Goals . 3
1.2 Contributing . 3

2 Core API 5
2.1 Conn . 5
2.2 Middleware . 5
2.3 Response State Transitions . 6
2.4 Servers . 7

3 Topic Guides 8
3.1 Request Body Reading . 8
3.2 Forms . 8
3.3 NodeJS . 10

3.3.1 Monad Transformers . 10
3.4 Testing . 10

4 Tutorials 12
4.1 Getting Started with Hyper . 12

5 Extensions 14
5.1 Type-Level Routing . 14

5.1.1 Packages . 14

6 Frequently Asked Questions 15
6.1 Why PureScript, and not Haskell? . 15

Type-safe, statically checked composition of HTTP servers

Hyper is an experimental middleware architecture for HTTP servers written in PureScript. Its main
focus is correctness and type-safety, using type-level information to enforce correct composition and
abstraction for web servers. The Hyper project is also a breeding ground for higher-level web server
constructs, which tend to fall under the “framework” category.

Note: Until recently, most work on extensions and higher-level constructs have started their life in the
main repository, but have then been separated into their own packages. More things might be separated
in the near future, so prepare for unstability. Hyper itself should be considered experimental, for now.

This documentation is divided into sections, each being suited for different types of information you
might be looking for.

• Introduction (page 3) describes the project itself; its motivations, goals, and relevant information
for contributors to the project.

1

Hyper Documentation, Version 0.9.0

• Core API (page 5) is an introduction and reference of the Core API of Hyper, on which the
higher-level features build.

• Topic Guides (page 8) explain how to solve specifics tasks of writing web servers using features of
Hyper.

• Tutorials (page 12) are step-by-step guides on how to build complete web applications.

• Extensions (page 14) provides an overview of extensions to Hyper.

• Frequently Asked Questions (page 15) lists some of the questions and considerations about Hyper
that come up frequently, answered for future reference.

Contents 2

Chapter 1

Introduction

Composing middleware in NodeJS is a risky business. They mutate the HTTP request and response
objects freely, and are often dependent on each others’ side-effects. There are no guarantees that you have
stacked the middleware functions in a sensible order, and it is often the case, in the author’s experience,
that misconfigured middleware takes a lot of time and effort to debug.

1.1 Goals

The goal of Hyper is to make use of row polymorphism and other tasty type system features in PureScript
to enforce correctly stacked middleware in HTTP server applications. All effects of middleware should
be reflected in the types to ensure that common mistakes cannot be made. A few examples of such
mistakes could be:

• Incorrect ordering of header and body writing

• Writing incomplete responses

• Writing multiple responses

• Trying to consume a non-parsed request body

• Consuming a request body parsed as the wrong type

• Incorrect ordering of, or missing, error handling middleware

• Incorrect ordering of middleware for sessions, authentication, authorization

• Missing authentication and/or authorization checks

• Linking, in an HTML anchor, to a resource that is not routed

• Posting, in an HTML form, to a resource that is not routed

Hyper aims to solve these issues, in part through its Core API for middleware, but also through a number
of extensions for building safely composable and maintainable web applications.

1.2 Contributing

While Hyper is currently an experiment, and in constant flux, you are welcome to contribute. Please post
ideas and start discussions using the issue tracker on GitHub1. You can also contact Oskar Wickström2

directly for design discussions. If this project grows, we can setup a mailing list, or some other means of
communication.

1 https://github.com/owickstrom/hyper/issues
2 https://wickstrom.tech/about.html

3

https://github.com/owickstrom/hyper/issues
https://wickstrom.tech/about.html

Hyper Documentation, Version 0.9.0

Please note that sending pull requests without first discussing the design is probably a waste of time, if
not only fixing simple things like typos.

1.2. Contributing 4

Chapter 2

Core API

This chapter explains the central components of Hyper, called the Core API. While focusing heavily on
safety, Hyper tries to provide an open API that can support multiple PureScript backends, and different
styles of web applications.

The design of Hyper is inspired by a number of projects. The middleware chain lends much from Plug,
an abstract HTTP interface in Elixir, that enables various HTTP libraries to inter-operate. You might
also find similarities with connect in NodeJS. On the type system side, Hyper tries to bring in ideas from
Haskell and Idris, specifically the use of phantom types and GADTs to lift invariants to the type level
and increase safety.

The central components of the Core API are:

2.1 Conn

A Conn, short for “connection”, models the entirety of a connection between the HTTP server and the
user agent, both request and response.

type Conn req res components =
{ request :: req
, response :: res
, components :: components
}

The request and response hold the values representing the HTTP request and response, respectively.
The purpose of the components field, however, is not that obvious. It is used for things not directly related
to HTTP, but nonetheless related to the act of responding to the HTTP request. A middleware can add
information to the Conn using components, like providing authentication or authorization values. The
types of these components then becomes part of the Conn type, and you get stronger static guarantees
when using the middleware.

2.2 Middleware

A middleware is an indexed monadic action transforming one Conn to another Conn. It operates in some
base monad m, and is indexed by i and o, the input and output Conn types of the middleware action.

newtype Middleware m i o a = ...

The input and output type parameters are used to ensure that a Conn is transformed, and that side-
effects are performed, correctly, throughout the middleware chain.

5

Hyper Documentation, Version 0.9.0

Being able to parameterize Middleware with some type m, you can customize the chain depending on
the needs of your middleware and handlers. Applications can use monad transformers to track state,
provide configuration, gather metrics, and much more, in the chain of middleware.

Middleware are composed using ibind, the indexed monadic version of bind. The simplest way of
composing middleware is by chaining them with :*>, from Control.Monad.Indexed. See purescript-
indexed-monad3 for more information.

writeStatus statusOK
:*> closeHeaders
:*> respond "We're composing middleware!"

If you want to feed the return value of one middleware into another, use :>>=, the infix operator alias
for ibind.

getUser :>>= renderUser

The qualified do syntax allows you to use ibind implicitly instead of the regular bind.

Middleware.do
user <- getUser
writeStatus statusOK
closeHeaders
respond ("User: " <> user.name)

2.3 Response State Transitions

The response field in the Conn is a value provided by the server backend. Middleware often constrain
the response field to be a value implementing the Response type class. This makes it possible to use
response-writing operations without depending on a specific server backend.

The state of a response is tracked in its last type parameter. This state tracking, and the type-indexed
middleware using the response, guarantee correctness in response handling, preventing incorrect ordering
of headers and body writes, incomplete responses, or other such mistakes. Let us have a look at the type
signatures of some of response-writing functions in Hyper.Response.

We see that headers takes a foldable collection of headers, and gives back a middleware that, given a
connection where headers are ready to be written (HeadersOpen), writes all specified headers, writes the
separating CRLF before the HTTP body, and marks the state of the response as being ready to write
the body (BodyOpen).

headers
:: forall t m req res b c
. (Foldable f

, Monad m
, Response res m b
)

=> f Header
-> Middleware

m
(Conn req (res HeadersOpen) c)
(Conn req (res BodyOpen) c)
Unit

To be used in combination with headers, the respond function takes some ResponseWritable b m
r, and gives back a middleware that, given a connection where all headers have been written, writes a
response, and marks the state of the response as ended.

3 https://pursuit.purescript.org/packages/purescript-indexed-monad/1.0.0

2.3. Response State Transitions 6

https://pursuit.purescript.org/packages/purescript-indexed-monad/1.0.0
https://pursuit.purescript.org/packages/purescript-indexed-monad/1.0.0

Hyper Documentation, Version 0.9.0

respond
:: forall m r b req res c
. (Monad m

, ResponseWritable b m r
, Response res m b
)

=> r
-> Middleware

m
(Conn req (res BodyOpen) c)
(Conn req (res ResponseEnded) c)
Unit

The ResponseWritable type class describes types that can be written as responses. It takes three type
parameters, where b is the target type, m is a base monad for the Middleware returned, and r is the
original response type,

class ResponseWritable b m r where
toResponse :: forall i. r -> Middleware m i i b

This mechanism allows servers to provide specific types for the response body, along with instances for
common response types. When using the Node server, which has a response body type wrapping Buffer,
you can still respond with a String or HTML value directly.

Aside from convenience in having a single function for most response types and servers, the polymorphism
of respond lets middleware be decoupled from specific servers. It only requires an instance matching
the response type used by the middleware and the type required by the server.

2.4 Servers

Although Hyper middleware can be applied directly to Conn values using runMiddleware, you likely
want a server to run your middleware. Hyper tries to be as open as possible when it comes to servers –
your application, and the middleware it depends on, should not be tied to a specific server. This allows
for greater reuse and the ability to test entire applications without running the “real” server. Currently
Hyper bundles a NodeJS server, described in NodeJS (page 10), as well as a test server, described in
Testing (page 10).

2.4. Servers 7

Chapter 3

Topic Guides

The topic guides explain how to solve specifics tasks of writing web servers using features of Hyper. They
are not full-length tutorials, but try to cover the details, and possible considerations, of a single subject.
The following topic guides are available:

3.1 Request Body Reading

The ReadableBody type class has one operation, readBody, which supports different servers to provide
different types of request body values.

class ReadableBody req m b | req -> b where
readBody

:: forall res c
. Middleware

m
(Conn req res c)
(Conn req res c)
b

Given that there is an instance for the body b, and the return type r, we can use this middleware together
with other middleware, like so:

onPost =
readBody :>>=
case _ of

"" ->
writeStatus statusBadRequest
:*> closeHeaders
:*> respond "... anyone there?"

msg ->
writeStatus statusBadRequest
:*> closeHeaders
:*> respond ("You said: " <> msg)

3.2 Forms

When working with form data, we often want to serialize and deserialize forms as custom data types,
instead of working with the key-value pairs directly. The ToForm and FromForm type classes abstracts
serialization and deserialization to form data, respectively.

We first declare our data types, and some instance which we will need later.

8

Hyper Documentation, Version 0.9.0

data MealType = Vegan | Vegetarian | Omnivore | Carnivore

derive instance genericMealType :: Generic MealType _
instance eqMealType :: Eq MealType where eq = genericEq
instance showMealType :: Show MealType where show = genericShow

newtype Order = Order { beers :: Int, meal :: MealType }

In this example we will only deserialize forms, and thus we only need the FromForm instance.

instance fromFormOrder :: FromForm Order where
fromForm form = do

beers <- required "beers" form >>= parseBeers
meal <- required "meal" form >>= parseMealType
pure (Order { beers: beers, meal: meal })
where

parseBeers s =
maybe
(throwError ("Invalid number: " <> s))
pure
(Int.fromString s)

parseMealType =
case _ of

"Vegan" -> pure Vegan
"Vegetarian" -> pure Vegetarian
"Omnivore" -> pure Omnivore
"Carnivore" -> pure Carnivore
s -> throwError ("Invalid meal type: " <> s)

Now we are ready to write our handler. We use parseFromForm to get a value of type Either String
Order, where the String explains parsing errors. By pattern matching using record field puns, we extract
the beers and meal values, and respond based on those values.

onPost =
parseFromForm :>>=
case _ of

Left err ->
writeStatus statusBadRequest
:*> closeHeaders
:*> respond (err <> "\n")

Right (Order { beers, meal })
| meal == Omnivore || meal == Carnivore ->

writeStatus statusBadRequest
:*> closeHeaders
:*> respond "Sorry, we do not serve meat here.\n"

| otherwise ->
writeStatus statusBadRequest
:*> closeHeaders
:*> respond ("One " <> show meal <> " meal and "

<> show beers <> " beers coming up!\n")

Let’s try this server out at the command line.

$ curl -X POST -d 'beers=6' http://localhost:3000
Missing field: meal
$ curl -X POST -d 'meal=Vegan&beers=foo' http://localhost:3000
Invalid number: foo
$ curl -X POST -d 'meal=Omnivore&beers=6' http://localhost:3000
Sorry, we do not serve meat here.
$ curl -X POST -d 'meal=Vegetarian&beers=6' http://localhost:3000
One Vegetarian meal and 6 beers coming up!

3.2. Forms 9

Hyper Documentation, Version 0.9.0

3.3 NodeJS

The server in Hyper.Node.Server wraps the http module in NodeJS, and serves middleware using the
Aff monad. Here is how you can start a Node server:

let
app =

writeStatus (Tuple 200 "OK")
:*> closeHeaders
:*> respond "Hello there!"

in runServer defaultOptions {} app

As seen above, runServer takes a record of options, an initial components record, and your application
middleware. If you want to do logging on server startup, and on any request handling errors, use
defaultOptionsWithLogging.

3.3.1 Monad Transformers

You might want to use a monad transformer stack in your application, for instance as a way to pass con-
figuration, or to accumulate some state in the chain of middleware. The underlying monad of Middleware
is parameterized for this exact purpose. When running the NodeJS server with monad transformers, you
need to use runServer' instead of the regular runServer, and pass a function that runs your monad
and returns an Aff value.

The following code runs a middleware using the ReaderT monad transformer. Note that the runAppM
function might need to be defined at the top-level to please the type checker.

type MyConfig = { thingToSay :: String }

runAppM
:: forall a.

ReaderT MyConfig Aff a
-> Aff a

runAppM = flip runReaderT { thingToSay: "Hello, ReaderT!" }

main :: Effect Unit
main =

let app =
lift' ask :>>= \config ->

writeStatus statusOK
:*> closeHeaders
:*> respond config.thingToSay

in runServer' defaultOptionsWithLogging {} runAppM app

In a real-world application the configuration type MyConfig could hold a database connection pool, or
settings read from the environment, for example.

3.4 Testing

When running tests you might not want to start a full HTTP server and send requests using an HTTP
client. Instead you can use the server in Hyper.Test.TestServer. It runs your middleware directly on
Conn values, and collects the response using a Writer monad. You get back a TestResponse from which
you can extract the status code, headers, and the response body.

it "responds with a friendly message" do
conn <- { request: TestRequest defaultRequest

, response: TestResponse Nothing [] []
, components: {}
}

(continues on next page)

3.3. NodeJS 10

Hyper Documentation, Version 0.9.0

(continued from previous page)
evalMiddleware app
testServer

testStatus conn `shouldEqual` Just statusOK
testStringBody conn `shouldEqual` "Hello there!"

3.4. Testing 11

Chapter 4

Tutorials

This chapter includes step-by-step guides on how to build complete web applications using Hyper.

4.1 Getting Started with Hyper

Welcome to Getting Started with Hyper ! The purpose of this tutorial is for you to get a minimal Hyper
project up and running. It assumes only that you have working PureScript development environment,
with node, psc, pulp, and bower installed. If you do not have those tools already, follow the installation
steps described in Getting Started4 in the PureScript documentation.

Note: Hyper 0.9.0 requires PureScript version 0.12.25 or higher.

Start off by generating an empty project by entering the following commands in your terminal:

mkdir hello-hyper
cd hello-hyper
pulp init

Then install purescript-hyper, and add it as a project dependency, by running:

bower i purescript-hyper --save

You now have what you need to write a server. Edit src/Main.purs to look like this:

module Main where

import Prelude
import Control.Monad.Indexed ((:*>))
import Effect (Effect)
import Hyper.Node.Server (defaultOptionsWithLogging, runServer)
import Hyper.Response (closeHeaders, respond, writeStatus)
import Hyper.Status (statusOK)

main :: Effect Unit
main =

let app = writeStatus statusOK
:*> closeHeaders
:*> respond "Hello, Hyper!"

in runServer defaultOptionsWithLogging {} app

4 https://github.com/purescript/documentation/blob/master/guides/Getting-Started.md
5 https://github.com/purescript/purescript/releases/tag/v0.12.2

12

https://github.com/purescript/documentation/blob/master/guides/Getting-Started.md
https://github.com/purescript/purescript/releases/tag/v0.12.2

Hyper Documentation, Version 0.9.0

The main function defines a value app, which is a Middleware (page 5), responding with the HTTP
status “200 OK”, no extra headers, and “Hello, Hyper!” as the response body. The use of runServer
creates a NodeJS server running our middleware.

Now build and run the program:

pulp run

You should see output similar to the following:

* Building project in /tmp/hello-hyper
* Build successful.
Listening on http://localhost:3000

Open http://localhost:3000 in your web browser, and you should see “Hello, Hyper!” rendered. Congrat-
ulations, you have written your first web server using Hyper!

Note: There is only one tutorial here right now, but more will be written. In the meantime, check out
the runnable examples at GitHub6.

6 https://github.com/owickstrom/hyper/tree/master/examples

4.1. Getting Started with Hyper 13

http://localhost:3000
https://github.com/owickstrom/hyper/tree/master/examples

Chapter 5

Extensions

There are a number of extensions built on top of the Core API, providing higher-level abstractions. They
are, for technical reasons, usually hosted as separate Git repositories.

5.1 Type-Level Routing

The Trout7 package provides type-level routing. Its API, inspired heavily by the Haskell library Servant8,
lets us express web application routing at the type-level using routing types.

By using routing types we get static guarantees about having handled all cases and having correctly
serializing and deserializing data. We also get a lot of stuff for free, such as type-safe parameters for
handlers, generated type-safe URIs to endpoints, and generated clients and servers.

5.1.1 Packages

The following packages are available for type-level routing with Hyper:

Trout9

Provides the core types used in routing types. It does not depend on Hyper, and can be used for
other libraries and frameworks, theoretically.

Hypertrout10

Used to create routers based on routing types, which are Hyper middleware. It can be seen as the
equivalent of servant-server.

Trout Client11

Derive client-side accessor functions for doing AJAX requests, based on Trout routing types. Use
this together with Hypertrout to get an all-PureScript project, with safe routing between client and
server.

7 https://github.com/owickstrom/purescript-trout
8 https://haskell-servant.github.io
9 https://github.com/owickstrom/purescript-trout

10 https://github.com/owickstrom/purescript-hypertrout
11 https://github.com/owickstrom/purescript-trout-client

14

https://github.com/owickstrom/purescript-trout
https://haskell-servant.github.io
https://github.com/owickstrom/purescript-trout
https://github.com/owickstrom/purescript-hypertrout
https://github.com/owickstrom/purescript-trout-client

Chapter 6

Frequently Asked Questions

This document lists some of the questions and considerations about Hyper that come up frequently, and
answers that hopefully serves future readers well. Please, do not regard this as a complete rationale of
the project, but rather a casual summary of discussions that have been held in the past.

6.1 Why PureScript, and not Haskell?

This project started out as a curiosity around expressing statically typed middleware using extensible
records12. While Haskell has a record construct, extensible records is not a built-in feature, and the
libraries implementing extensible records for Haskell seemed too clunky to build a library upon. Pure-
Script’s extensible records, and row typing, was a very good match for middleware typing, and the
cognitive overhead and expressiveness was reasonable.

Another concern, which might not be shared by all readers, is the NodeJS deployment target. While the
project author would love to see more support for Haskell deployments in PaaS solutions, the current
situation seem to favour deployment on NodeJS, JVM, Ruby, and Python. Also, many companies and
developers might have invested in NodeJS infrastructure and libraries of their own, and so PureScript
provides a gradual migration path to statically typed functional programming in web development.

The third point to consider is that PureScript is gaining traction on the client side, competing, and
perhaps living in symbiosis, with frontend frameworks like React, Angular, and Ember. Having the
option to share data types between client and server, and write them both in a language like PureScript,
is something Hyper emphasizes.

12 https://www.microsoft.com/en-us/research/publication/extensible-records-with-scoped-labels/

15

https://www.microsoft.com/en-us/research/publication/extensible-records-with-scoped-labels/
https://www.microsoft.com/en-us/research/publication/extensible-records-with-scoped-labels/

	Introduction
	Goals
	Contributing

	Core API
	Conn
	Middleware
	Response State Transitions
	Servers

	Topic Guides
	Request Body Reading
	Forms
	NodeJS
	Monad Transformers

	Testing

	Tutorials
	Getting Started with Hyper

	Extensions
	Type-Level Routing
	Packages

	Frequently Asked Questions
	Why PureScript, and not Haskell?

